Induction of long-term potentiation and long-term depression is cell-type specific in the spinal cord.

Pain

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, South Korea Department of Physiology, College of Medicine, Yonsei University, Seoul, South Korea.

Published: April 2015

The underlying mechanism of chronic pain is believed to be changes in excitability in spinal dorsal horn (DH) neurons that respond abnormally to peripheral input. Increased excitability in pain transmission neurons, and depression of inhibitory neurons, are widely recognized in the spinal cord of animal models of chronic pain. The possible occurrence of 2 parallel but opposing forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) was tested in 2 types of identified DH neurons using whole-cell patch-clamp recordings in mouse spinal cord slices. The test stimulus was applied to the sensory fibers to evoke excitatory postsynaptic currents in identified spinothalamic tract neurons (STTn) and GABAergic neurons (GABAn). Afferent conditioning stimulation (ACS) applied to primary afferent fibers with various stimulation parameters induced LTP in STTn but LTD in GABAn, regardless of stimulation parameters. These opposite responses were further confirmed by simultaneous dual patch-clamp recordings of STTn and GABAn from a single spinal cord slice. Both the LTP in STTn and the LTD in GABAn were blocked by an NMDA receptor antagonist, AP5, or an intracellular Ca chelator, BAPTA. Both the pattern and magnitude of intracellular Ca after ACS were almost identical between STTn and GABAn based on live-cell calcium imaging. The results suggest that the intense sensory input induces an NMDA receptor-dependent intracellular Ca increase in both STTn and GABAn, but produces opposing synaptic plasticity. This study shows that there is cell type-specific synaptic plasticity in the spinal DH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365505PMC
http://dx.doi.org/10.1097/01.j.pain.0000460354.09622.ecDOI Listing

Publication Analysis

Top Keywords

sttn gaban
20
spinal cord
16
synaptic plasticity
12
long-term potentiation
8
long-term depression
8
chronic pain
8
patch-clamp recordings
8
stimulation parameters
8
ltp sttn
8
spinal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!