A generic magnetic microsphere platform with "clickable" ligands for purification and immobilization of targeted proteins.

ACS Appl Mater Interfaces

§Polymer Program, Institute of Materials Science and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.

Published: April 2015

While much effort has been made to prepare magnetic microspheres (MMs) with surface moieties that bind to affinity tags or fusion partners of interest in the recombinant proteins, it remains a challenge to develop a generic platform that is capable of incorporating a variety of capture ligands by a simple chemistry. Herein, we developed core-shell structured magnetic microspheres with a high magnetic susceptibility and a low nonspecific protein adsorption. Surface functionalization of these MMs with azide groups facilitates covalent attachment of alkynylated ligands on their surfaces by "click" chemistry and creates a versatile platform for selective purification and immobilization of recombinant proteins carrying corresponding affinity tags. The general applicability of the approach was demonstrated in incorporating four widely used affinity ligands with different reactive groups (-CHO, -SH, -COOH, and -NH2) onto the MMs platform for purification and immobilization of targeted proteins. The azide-functionalized MMs would be applicable for a variety of ligands and substrates that are amenable to alkynylation modification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b00313DOI Listing

Publication Analysis

Top Keywords

purification immobilization
12
immobilization targeted
8
targeted proteins
8
magnetic microspheres
8
affinity tags
8
recombinant proteins
8
ligands
5
generic magnetic
4
magnetic microsphere
4
platform
4

Similar Publications

This study explores the formation of functionalized carbon surfaces through shock compression of graphite in the presence of water, modeled using molecular dynamics and the ReaxFF reactive force field. The shock compression method produces activated carbon with surface functionalities, primarily hydroxyl groups, and varying morphological properties. Two approaches, unidirectional and isotropic compression, yield distinct surface structures: the former preserves a relatively flat surface, while the latter generates corrugated features with valleys and ridges.

View Article and Find Full Text PDF

3,6-Anhydro-L-galactose suppresses mouse lymphocyte proliferation by attenuating JAK-STAT growth factor signal transduction and G-S cell cycle progression.

Int Immunopharmacol

January 2025

AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.

View Article and Find Full Text PDF

Secondary-ion-promoted active site redistribution in molecular sieves: A strategy to enhance catalyst bifunctionality.

J Colloid Interface Sci

December 2024

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address:

As the frontier of environmental catalysis, mercury removal by deNO unit over bifunctional catalyst has emerged. However, it is fundamentally challenging to achieve simultaneous NO and mercury removal in industrial flue gas due to the commercial selective catalytic reduction (SCR) molecular sieves' lack of demercuration active centers. Herein, we demonstrate an active site in situ reconfiguration approach to enhance the oxidation of elemental mercury and immobilize divalent mercury by modified commercial SCR catalysts.

View Article and Find Full Text PDF

Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.

View Article and Find Full Text PDF

Characterization of the E26H Mutant Schistosoma japonicum Glutathione S-Transferase.

Proteins

January 2025

Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

Glutathione-S-transferase, such as that of Schistosoma japonicum (sjGST) belongs to the most widely utilized fusion tags in the recombinant protein technology. The E26H mutation of sjGST has already been found to remarkably improve its ability for binding divalent ions, enabling its purification with immobilized metal affinity chromatography (IMAC). Nevertheless, most characteristics of this mutant remained unexplored to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!