To observe the effects of insulin resistance on gonadal steroid hormone stimulation and the myometrial growth of female rats in order to elucidate the relationship between insulin resistance and the development of uterine leiomyomas. We divided 180 nonpregnant female Wistar rats into three groups as follows: group A, as the control group; group B, as the "model by exogenous sex hormone" group; and group C, as the "model by exogenous sex hormone plus insulin-resistance" group. All the animals were raised for 16 weeks. Uterine coefficient and homeostasis model assessment of insulin resistance (HOMA-IR) index were calculated. Myometrial depth and expression levels of the oestrogen receptor (ER), progesterone receptor (PR), and proliferating cell nuclear antigen (PCNA) were measured. HOMA-IR index, serum oestrogen level, uterine coefficient, and myometrial depth were lower in group B than in group C (P < 0.05). The expression levels of ER, PR, and PCNA were higher in group C than in group B (P < 0.05). An auxo-action of insulin resistance in myometrial growth was observed when exogenous oestrogen and progesterone were administered to the female rats in this study. Thus, we suspected that insulin resistance may affect the development of uterine leiomyomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358627 | PMC |
Appl Physiol Nutr Metab
January 2025
Brock University, Department of Health Sciences, St Catharines, Ontario, Canada.
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.
Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Divisions of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene, potentially disrupting lipid metabolism and leading to dyslipidemia (DLD) and steatotic liver disease (SLD). Although SLD has been described in RTT mouse models, it remains undocumented in humans. We herein describe a 24-year-old woman with RTT who was evaluated for abnormal liver enzymes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
School of Health and Exercise Sciences, The University of British Columbia, Okanagan,BC V1V 1V7, Canada.
People with type 2 diabetes (T2D) have a greater risk of developing neurodegenerative diseases, like Alzheimer's disease, in later life. Exogenous ketone supplements containing the ketone body β-hydroxybutyrate (β-OHB) may be a strategy to protect the brain as β-OHB can support cerebral metabolism and promote neuronal plasticity via expression of brain-derived neurotrophic factor (BDNF). Parallel human (ClinicalTrials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!