Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces.
Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline phosphatase (ALP) activity, mineralized nodules formation and cell osteocalcin (OC) secretion were measured.
Results: Electrochemically deposited Sr-HA coating and HA coating had no effect on the proliferation of BMSCs and demonstrated that the materials have a good biocompatibility. BMSCs cultured on Sr-HA coating showed increased alkaline phosphatase activity, mineralized nodules formation, and cell OC secretion compared with the other two groups. Cells cultured on HA coating also showed increased biological activity compared with the roughened group.
Conclusion: Sr-HA coated titanium surfaces by electrochemical deposition can promote osteogenesis of BMSCs in vitro and have the potential to shorten bone healing period and enhance implant osseointegration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358450 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!