Doxorubicin has cardiotoxic effects that limit its clinical benefit in cancer patients. This study aims to investigate the protective effects of the total flavonoids from Clinopodium chinense (Benth.) O. Ktze (TFCC) against doxorubicin- (DOX-) induced cardiotoxicity. Male rats were intraperitoneally injected with a single dose of DOX (3 mg/kg) every 2 days for three injections. Heart samples were collected 2 weeks after the last DOX dose and then analyzed. DOX delayed body and heart growth and caused cardiac tissue injury, oxidative stress, apoptotic damage, mitochondrial dysfunction, and Bcl-2 expression disturbance. Similar experiments in H9C2 cardiomyocytes showed that doxorubicin reduced cell viability, increased ROS generation and DNA fragmentation, disrupted mitochondrial membrane potential, and induced apoptotic cell death. However, TFCC pretreatment suppressed all of these adverse effects of doxorubicin. Signal transduction studies indicated that TFCC suppressed DOX-induced overexpression of p53 and phosphorylation of JNK, p38, and ERK. Studies with LY294002 (a PI3K/AKT inhibitor) demonstrated that the mechanism of TFCC-induced cardioprotection also involves activation of PI3K/AKT. These findings indicated the potential clinical application of TFCC in preventing DOX-induced cardiac oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346128 | PMC |
http://dx.doi.org/10.1155/2015/472565 | DOI Listing |
Sci Rep
January 2025
Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt.
Chicory species, particularly Cichorium endive Supp. Pumillum, also, known as Egyptian chicory, are globally recognized for their rich content of bioactive secondary metabolites such as flavonoids and phenolics. These metabolites are highly valued for their pharmaceutical, dietary, and commercial applications.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
Cholangiocarcinoma (CCA) poses a significant healthcare challenge due to the limited effects of chemotherapeutic drugs. Natural products have gained widespread attention in cancer research according to their promising anti-cancer effects with minimal adverse side effects. This study explored the potential of Tacca chantrieri (TC), a plant rich in bioactive compounds, as a therapeutic agent for CCA.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Department of Cardiology, Sanya Central Hospital, Sanya 572000, China.
Objectives: To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.
Methods: We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified PPI analysis.
Nan Fang Yi Ke Da Xue Xue Bao
January 2025
College of Basic Medical Sciences, Xiangnan University, Chenzhou 423000, China.
Objectives: To explore the active components that mediate the therapeutic effect of on psoriasis and their therapeutic mechanisms.
Methods: TCMSP, TCMIP, PharmMapper, Swiss Target Prediction, GeneCards, OMIM and TTD databases were searched for the compounds in and their targets and the disease targets of psoriasis. A drug-active component-target network and the protein-protein interaction network were constructed, and DAVID database was used for pathway enrichment analysis.
Int J Biol Macromol
January 2025
Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:
Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!