AI Article Synopsis

  • MYC-induced T-ALL relies heavily on MYC, leading to both cell-internal and external mechanisms that impact tumor behavior.
  • The study found that removing either the p19ARF or p53 genes disrupts the tumor regression usually triggered by shutting down MYC.
  • Specifically, loss of p19ARF affects cellular aging and immune response better than loss of p53, and its absence is linked to worse survival outcomes in human ALL cases.

Article Abstract

MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414137PMC
http://dx.doi.org/10.18632/oncotarget.2969DOI Listing

Publication Analysis

Top Keywords

cellular senescence
16
myc inactivation
16
innate immune
12
immune response
12
loss p19arf
12
p19arf p53
12
p19arf
8
senescence innate
8
myc-induced t-all
8
shutdown angiogenesis
8

Similar Publications

Functional Diversity of Senescent Cells in Driving Aging Phenotypes and Facilitating Tissue Regeneration.

J Biochem

January 2025

Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.

As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the aging process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development, and repair.

View Article and Find Full Text PDF

Cellular Senescence in The Cancer Microenvironment.

J Biochem

January 2025

Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

In this aging society, the number of patients suffering from age-related diseases, including cancer, is increasing. Cellular senescence is a cell fate that involves permanent cell cycle arrest. Accumulated senescent cells in tissues over time present senescence-associated secretory phenotype (SASP) and make the inflammatory context, disturbing the tumor microenvironment.

View Article and Find Full Text PDF

Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases.

View Article and Find Full Text PDF

Increased expression of the cyclin-dependent kinase inhibitor p16Ink4a (p16) is detected in neurons of human Alzheimer's disease (AD) brains and during normal aging. Importantly, selective eliminating p16-expressing cells in AD mouse models attenuates tau pathologies and improves cognition. But whether and how p16 contributes to AD pathogenesis remains unclear.

View Article and Find Full Text PDF

Accumulation of damaged biomolecules in body tissues is the primary cause of aging and age-related chronic diseases. Since this damage often occurs spontaneously, it has traditionally been regarded as untreatable, with typical therapeutic strategies targeting genes or enzymes being ineffective in this domain. In this report, we demonstrate that an antibody targeting the isoDGR damage motif in lung tissue can guide immune clearance of harmful damaged proteins in vivo, effectively reducing age-linked lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!