Gold(III) alkynyl complexes with dianionic tridentate pincer ligands have received growing attention recently because of their rich luminescence behavior and their potential applications in areas such as optoelectronics and sensors. In this study, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed to investigate the radiative and nonradiative processes for the gold(III) alkynyl complexes with different dianionic tridentate ligands, [Au(C^N^C)(C≡CC6H5)] (1; C^N^C = 2,6-diphenylpyridine), [Au(C(Np)^N^C(Np))(C≡CC6H5)] [2; C(Np)^N^C(Np) = 2,6-di(2-naphthyl)pyridine], [Au(N^N^N)(C≡CC6H5)] [3; N^N^N = 2,6-bis(benzimidazol-2'-yl)pyridine], and [Au(C^C^N)(C≡CC6H5)] [4; C^C^N = 3-(2-pyridyl)biphenyl]. It has been found that the electronic properties of the tridentate ligand could have a significant impact on the radiative and nonradiative processes. This study provides an in-depth understanding on the effect of the dianionic pincer ligands on the different photophysical behaviors among the gold(III) alkynyl complexes and crucial information for the future design of gold(III) complexes in various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b00215DOI Listing

Publication Analysis

Top Keywords

goldiii alkynyl
16
dianionic tridentate
12
radiative nonradiative
12
nonradiative processes
12
alkynyl complexes
12
tridentate ligands
8
processes goldiii
8
complexes dianionic
8
pincer ligands
8
goldiii
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!