In this study, we have analyzed the intestinal microbial flora associated with Rhipicephalus microplus ticks using both culture-dependent and independent methods based on PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The R. microplus ticks were collected from cattle and goats in Jiangxi, Hunan and Guizhou Provinces of China. Three distinct strains of bacteria were isolated using culture-dependent methods: Staphylococcus simulans, Bacillus subtilis and Bacillus flexus strain. Nineteen distinct DGGE bands were found using PCR-DGGE analysis, and their search for identity shows that they belonged to Rickettsiaceae, Xanthomonadaceae, Coxiella sp., Ehrlichia sp., Pseudomonas sp., Ehrlichia sp., Orphnebius sp., Rickettsia peacockii, Bacillus flexus. Rickettsia peacockii and Coxiella genus were the dominant strain of the R. microplus ticks from cattle, Pseudomonas sp. and B. flexus strain were the most common species in all tick samples from goats. Ehrlichia canis were detected only in R. microplus ticks from Yongshun area in Hunan Province. The results indicate that the intestinal microbial diversity of R. microplus ticks was influenced by tick hosts and local differences in the sampling location and these two aspects may affect transmission of pathogen to humans and animals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10493-015-9896-1DOI Listing

Publication Analysis

Top Keywords

microplus ticks
24
rhipicephalus microplus
8
pcr-dgge analysis
8
intestinal microbial
8
bacillus flexus
8
flexus strain
8
rickettsia peacockii
8
microplus
6
ticks
6
identification intestinal
4

Similar Publications

Studying teratological abnormalities in ticks are taxonomically important because this poorly understood biological phenomenon causes difficulties in tick's identification. Globally, reports regarding these abnormalities in ticks, reasons of their causes and their impacts are scarce. According to the available published data, there are no studies regarding teratological abnormalities in ticks from Pakistan.

View Article and Find Full Text PDF

Spatiotemporal heterogeneity of Rhipicephalus microplus resistance to chemical acaricides at intra-farm level: A case study using ivermectin.

Med Vet Entomol

December 2024

Instituto de Investigación de la Cadena Láctea (IdICaL) (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, INTA E.E.A. Rafaela, Rafaela, Argentina.

The aim of this work was to analyse the spatiotemporal heterogeneity of Rhipicephalus microplus (Canestrini, 1888) (Acari: Ixodidae) resistance to chemical acaricides at intra-farm level under different environmental (favourable and unfavourable areas for tick development) and management (different schemes of acaricides applications) conditions using ivermectin as a model. The in vitro larval immersion test (LIT) was used to determine quantitatively the levels of resistance to ivermectin in the different populations and subpopulations of R. microplus analysed.

View Article and Find Full Text PDF

Jingmen tick virus (JMTV) is a novel segmented Flavivirus that was first identified from Rhipicephalus microplus in the Jingmen region of Hubei Province, China, in 2010. Subsequently, it was detected in a variety of countries and regions around the world. Meanwhile, JMTV has been proved to be pathogenic to humans and animals and could cause viremia in animals.

View Article and Find Full Text PDF

Background: This scoping review provides a baseline summary of the current records of the ticks, fleas, and mites of public health importance that are present in Bangladesh. It summarizes their geographic distributions and reports the levels of their infestation of livestock, pets, wildlife, and humans, and the clinical and epidemiological studies pertinent to these vectors and their pathogens.

Methods: Sixty-one articles were identified in a literature search, including 43 published since 2011.

View Article and Find Full Text PDF

From invasion to outbreak: tick introductions and disease.

Trends Parasitol

December 2024

Savannah River Ecology Laboratory & Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.

Introductions of tick disease vectors are inevitable in our changing world. While recent attention to tick invasions has increased following prominent invasion events worldwide, our understanding of how tick community ecology drives infection dynamics is lacking. Interactions between invasive and resident ticks can have profound impacts on human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!