Background: Ascorbate and neuronal-derived nitric oxide (NO) play regulatory roles in the brain that tare dependent on their compartmentalization and diffusion. Glutamatergic activation triggers both ascorbate fluxes toward extracellular medium and NO production. The information on the profiles of change in time and space upon glutamatergic activation is scarce and yet this knowledge is important for the understanding of ascorbate and NO functions in vivo, in particular in the case of a coupled interaction between both dynamics.
Hypothesis: NO produced upon NMDA receptor activation is a modulator of ascorbate release to the extracellular space.
Methods: In this work, carbon fiber microelectrodes for simultaneous measurements of these substances in the hippocampus were used to collect information about ascorbate and NO dynamic profiles in real time.
Results: Glutamate stimulation evoked transient ascorbate and NO signals with high degree of spatial and temporal correlation between them. Combined experiments encompassing direct stimulus with NO and inhibitors of glutamate uptake and nNOS provided additional evidence supporting the modulator role of NO in the release of ascorbate to the extracellular space.
Conclusions: The coupling between NO and ascorbate upon glutamatergic activation points to a functional impact on the activities of both compounds and, although the precise molecular mechanism needs to be clarified, such a coupling lays the foundations for new regulatory mechanisms in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2015.03.002 | DOI Listing |
J Pain Res
January 2025
Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2025
Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America. Electronic address:
Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!