A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-step deposition of high-mobility graphene at reduced temperatures. | LitMetric

Single-step deposition of high-mobility graphene at reduced temperatures.

Nat Commun

1] Department of Physics, California Institute of Technology, Pasadena, California 91125, USA [2] Institute of Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA [3] Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California, 91125, USA.

Published: March 2015

Current methods of chemical vapour deposition (CVD) of graphene on copper are complicated by multiple processing steps and by high temperatures required in both preparing the copper and inducing subsequent film growth. Here we demonstrate a plasma-enhanced CVD chemistry that enables the entire process to take place in a single step, at reduced temperatures (<420 °C), and in a matter of minutes. Growth on copper foils is found to nucleate from arrays of well-aligned domains, and the ensuing films possess sub-nanometre smoothness, excellent crystalline quality, low strain, few defects and room-temperature electrical mobility up to (6.0±1.0) × 10(4) cm(2) V(-1) s(-1), better than that of large, single-crystalline graphene derived from thermal CVD growth. These results indicate that elevated temperatures and crystalline substrates are not necessary for synthesizing high-quality graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms7620DOI Listing

Publication Analysis

Top Keywords

reduced temperatures
8
single-step deposition
4
deposition high-mobility
4
high-mobility graphene
4
graphene reduced
4
temperatures current
4
current methods
4
methods chemical
4
chemical vapour
4
vapour deposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!