Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362763 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1005012 | DOI Listing |
Nat Commun
January 2025
Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
The mechanistic link between the complex mutational landscape of de novo methyltransferase DNMT3A and the pathology of acute myeloid leukemia (AML) has not been clearly elucidated so far. Motivated by a recent discovery of the significance of DNMT3A-destabilizing mutations (DNMT3A) in AML, we here investigate the common characteristics of DNMT3A AML methylomes through computational analyses. We present that methylomes of DNMT3A AMLs are considerably different from those of DNMT3A AMLs in that they exhibit increased intratumor DNA methylation heterogeneity in bivalent chromatin domains.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China.
Rationale: Developmental and epileptic encephalopathy (DEE) defines a group of severe and heterogeneous neurodevelopmental disorders. The voltage-gated potassium channel subfamily 2 voltage-gated potassium channel α subunit encoded by the KCNB1 gene is essential for neuronal excitability. Previous studies have shown that KCNB1 variants can cause DEE.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.
Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.
View Article and Find Full Text PDFBMJ Paediatr Open
January 2025
School of Health Sciences, University of Dundee, Dundee, UK
Background: Early child development sets the course for optimal outcomes across life. Increasing numbers of children worldwide are exposed to opioids in pregnancy and frequently live in environments associated with adverse developmental outcomes. Although multiple systematic reviews have been published in this area, they use different exposures and different types of outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!