Activin production and signaling must be strictly regulated for normal testis development and function. Inhibins are potent activin inhibitors; mice lacking the inhibin-α gene (Inha-/- mice) cannot make inhibin and consequently have highly elevated activin and FSH serum concentrations and excessive activin signaling, resulting in somatic gonadal tumors and infertility. Dose-dependent effects of activin in testicular biology have been widely reported; hence, we hypothesized that male mice lacking one copy of the Inha gene would produce less inhibin and have an abnormal reproductive phenotype. To test this, we compared hormone concentrations, testis development, and sperm production in Inha+/+ and Inha+/- mice. Serum and testicular inhibin-α concentrations in adult Inha+/- mice were approximately 33% lower than wild type, whereas activin A, activin B, FSH, LH, and T were normal. Sixteen-day-old Inha+/- mice had a mixed phenotype, with tubules containing extensive germ cell depletion juxtaposed to tubules with advanced Sertoli and germ cell development. This abnormal phenotype resolved by day 28. By 8 weeks, Inha+/- testes were 11% larger than wild type and supported 44% greater daily sperm production. By 26 weeks of age, Inha+/- testes had distinct abnormalities. Although still fertile, Inha+/- mice had a 27% reduction in spermatogenic efficiency, a greater proportion of S-phase Sertoli cells and lower Leydig cell CYP11A1 expression. This study is the first to identify an intratesticular role for inhibin/inhibin-α subunit, demonstrating that a threshold level of this protein is required for normal testis development and to sustain adult somatic testicular cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2014-1555 | DOI Listing |
BMC Genomics
December 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730030, China.
Background: The Hezuo (HZ) pig, a famous indigenous breed in China, is characterized by precocious puberty compared with foreign-introduced pig breeds. Sexual maturation is a complex physiological process, and in recent years, circular RNAs (circRNAs), a new class of noncoding RNAs with endogenous regulatory functions, have been shown to play important roles in regulating sexual maturation. However, the dynamic expression and regulatory mechanism of circRNAs during sexual maturation in HZ pigs remain unclear.
View Article and Find Full Text PDFJ Lipids
December 2024
Department of Genetic Engineering, CINVESTAV Irapuato Unit, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato 36824, Mexico.
Paternal exposure to high-fat diets or individual fatty acids (FAs) including arachidonic acid (AA) modifies progeny traits by poorly understood mechanisms. Specific male reproductive system FAs may be involved in paternal inheritance, as they can modify a range of cellular components, including the epigenome. Our objective was to determine FAs in compartments of the male reproductive system that potentially affect ejaculate composition-right and left testicular interstitial fluid (TIF), vesicular gland fluid (VGF), and epididymal adipose tissue (EAT)-in mice exposed to AA or vehicle daily for 10 days ( = 9-10/group).
View Article and Find Full Text PDFJ Pediatr Urol
December 2024
Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey.
Introduction: Cryptorchidism impairs sperm development and increases the risk of infertility and testicular cancer. Estrogen signalling is critical for proper descent of the testicles, and hormonal imbalances play a role in cryptorchidism. CYP19, also known as aromatase, encodes an enzyme that converts testosterone, a male sex hormone, into estradiol, the main form of estrogen.
View Article and Find Full Text PDFDomest Anim Endocrinol
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
Energy supply is crucial for testicular development. Nevertheless, the specific alterations in the energy metabolic pathways that affect testicular development have not been extensively investigated. This study aimed to investigate the variations in metabolites and alterations in energy metabolic pathways in the testes of Hu sheep with different developmental status at 6 months of age.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!