Murine Inhibin α-Subunit Haploinsufficiency Causes Transient Abnormalities in Prepubertal Testis Development Followed by Adult Testicular Decline.

Endocrinology

Priority Research Centres for Reproductive Science (C.I., A.B., J.M., S.E.) and Chemical Biology (C.I.), School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; Departments of Anatomy and Developmental Biology (H.G., Q.L., K.L.L.) and Biochemistry and Molecular Biology (S.C.M., K.L.L.) and Monash Micro Imaging (A.J.F.), Monash University, Clayton, Victoria 3800, Australia; and Faculty of Medicine, Nursing, and Health Sciences (J.C.G.D.), Department of Medicine, Monash Medical Centre, and Monash Institute of Medical Research-Prince Henry's Institute of Medical Research (M.P.H.), Clayton, Victoria 3168, Australia.

Published: June 2015

Activin production and signaling must be strictly regulated for normal testis development and function. Inhibins are potent activin inhibitors; mice lacking the inhibin-α gene (Inha-/- mice) cannot make inhibin and consequently have highly elevated activin and FSH serum concentrations and excessive activin signaling, resulting in somatic gonadal tumors and infertility. Dose-dependent effects of activin in testicular biology have been widely reported; hence, we hypothesized that male mice lacking one copy of the Inha gene would produce less inhibin and have an abnormal reproductive phenotype. To test this, we compared hormone concentrations, testis development, and sperm production in Inha+/+ and Inha+/- mice. Serum and testicular inhibin-α concentrations in adult Inha+/- mice were approximately 33% lower than wild type, whereas activin A, activin B, FSH, LH, and T were normal. Sixteen-day-old Inha+/- mice had a mixed phenotype, with tubules containing extensive germ cell depletion juxtaposed to tubules with advanced Sertoli and germ cell development. This abnormal phenotype resolved by day 28. By 8 weeks, Inha+/- testes were 11% larger than wild type and supported 44% greater daily sperm production. By 26 weeks of age, Inha+/- testes had distinct abnormalities. Although still fertile, Inha+/- mice had a 27% reduction in spermatogenic efficiency, a greater proportion of S-phase Sertoli cells and lower Leydig cell CYP11A1 expression. This study is the first to identify an intratesticular role for inhibin/inhibin-α subunit, demonstrating that a threshold level of this protein is required for normal testis development and to sustain adult somatic testicular cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1555DOI Listing

Publication Analysis

Top Keywords

testis development
16
inha+/- mice
16
normal testis
8
mice lacking
8
activin fsh
8
sperm production
8
wild type
8
germ cell
8
inha+/- testes
8
activin
7

Similar Publications

The present study aimed to evaluate the impact of (NAC) on testicular hypoxia caused by varicocele, focusing specifically on the regulation of genes related to apoptosis and oxidative stress in the testes of mature Wistar rats. Thirty-two rats were divided into four groups: Control (Sham), hypoxia, testicular hypoxia treated with NAC (Hypoxia + NAC), and healthy animals treated with NAC. After the 8-week treatment period, testicular histopathology and the levels of oxidative stress markers-superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA)-in serum were examined.

View Article and Find Full Text PDF

Background And Objectives: Epididymal transit renders key competence to mammalian spermatozoa for fertilizing eggs. Generally, the two paralogs of glycogen synthase kinase 3, GSK3α and GSK3β, functionally overlap except in testis and sperm. We showed that GSK3α is essential for epididymal sperm maturation and fertilization.

View Article and Find Full Text PDF

Oligoasthenoteratozoospermia (OAT) is a common cause of infertility among males, and the majority of cases of idiopathic OAT are thought to be attributed to genetic defects. In this study, the role of the CEP78 protein in spermatogenesis was initially investigated using Cep78 knockout (Cep78) mice. Notably, the male Cep78 mice exhibited the OAT phenotype and sterility.

View Article and Find Full Text PDF

Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. Migrating mesenchymal cells form tissues that shape the body's organs. We developed a powerful model, exploring how nascent myotubes migrate onto the testis during pupal development, forming the muscles ensheathing it and creating its characteristic spiral shape.

View Article and Find Full Text PDF

Tracking Abdominal-B Expression and Function in the Fly Internal Reproductive System by Explants Imaging.

Methods Mol Biol

January 2025

Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.

Hox genes specify identities mainly in the anteroposterior axis in various animal tissues, some of them forming part of the internal organs and systems. The expression and activity of these genes have been analyzed mainly in Drosophila melanogaster, the fruit fly, and in mouse; in the former, the functional study of Hox genes has been detailed predominantly in epidermal structures, but their role in internal organs poses some challenges, particularly in pupae. One of these genes, Abdominal-B, dictates the development of many internal organs in the posterior abdomen of the fly, yet techniques for its analysis, like in vivo time-lapse, have long been impractical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!