DNA-editing technology has made it possible to rewrite genetic information in living cells. Human immunodeficiency virus (HIV) provirus, an integrated form of viral complementary DNA in host chromosomes, could be a potential target for this technology. We recently reported that HIV proviral DNA could be excised from the chromosomal DNA of HIV-based lentiviral DNA-transduced T cells after multiple introductions of a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonuclease system targeting HIV long terminal repeats (LTR). Here, we generated a more efficient strategy that enables the excision of HIV proviral DNA using customized transcription activator-like effector nucleases (TALENs) targeting the same HIV LTR site. A single transfection of TALEN-encoding mRNA, prepared from in vitro transcription, resulted in more than 80% of lentiviral vector DNA being successfully removed from the T cell lines. Furthermore, we developed a lentiviral vector system that takes advantage of the efficient proviral excision with TALENs and permits the simple selection of gene-transduced and excised cells in T cell lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363575 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120047 | PLOS |
Proc Natl Acad Sci U S A
January 2025
Innovative Genomics Institute, University of California, Berkeley, CA 94720.
The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFTissue Cell
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA
Background: Recent genome‐wide association studies (GWAS) of Alzheimer’s disease (AD) have identified approximately 70 genetic loci linked to the disorder. The pivotal challenge in the post‐GWAS era is dissecting the underlying causal variants and effector genes, a crucial step for effective therapeutic development. Most of these variants reside in non‐coding regions of the genome, suggesting their regulatory role in distal gene expression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université de Lille, Lille, Hauts‐de‐France, France
Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule‐binding domains in the intracellular aggregation of Tau protein.
Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti‐tau VHHs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!