Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

PLoS One

Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom.

Published: February 2016

Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling pathways and thus control stem cell fate for therapeutic purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363733PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121761PLOS

Publication Analysis

Top Keywords

wnt signalling
20
stem cell
12
frizzled receptors
12
signalling
9
wnt/β-catenin signalling
8
signalling pathway
8
wnt
8
signalling pathways
8
cell fate
8
tissue engineering
8

Similar Publications

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases.

J Cell Biochem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.

View Article and Find Full Text PDF

VPS45 Contributes to the Progression of Hepatocellular Carcinoma by Triggering the Wnt/β-Catenin Signaling Pathway.

Mol Carcinog

January 2025

Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.

Vacuolar protein sorting 45 (VPS45) has recently been implicated in the development of ovarian cancer and non-small cell lung cancer. However, its role in the onset and progression of hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of VPS45 in HCC.

View Article and Find Full Text PDF

Viral hepatitis B is infamous for being contracted in young adulthood and adolescence, as high-risk behaviors like unprotected sexual intercourse and intravenous drug abuse are common. Most infections caused by the hepatitis B virus (HBV) are cleared without any long-term sequelae, but some may persist and cause chronic hepatitis B (CHB). This chronicity may produce a state of prolonged inflammation and significantly increase the risk of developing colorectal adenomas (CRA) and colorectal carcinomas (CRC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!