The zebra mussel (Dreissena polymorpha, Pallas, 1771) is one of the most invasive species of freshwater bivalves, due to a combination of biological and anthropogenic factors. Once this species has been introduced to a new area, individuals form dense aggregations that are very difficult to remove, leading to many adverse socioeconomic and ecological consequences. In this study, we identified, tested, and validated a new set of polymorphic microsatellite loci (also known as SSRs, Single Sequence Repeats) using a Massive Parallel Sequencing (MPS) platform. After several pruning steps, 93 SSRs could potentially be amplified. Out of these SSRs, 14 were polymorphic, producing a polymorphic yield of 15.05%. These 14 polymorphic microsatellites were fully validated in a first approximation of the genetic population structure of D. polymorpha in the Iberian Peninsula. Based on this polymorphic yield, we propose a criterion for establishing the number of SSRs that require validation in similar species, depending on the final use of the markers. These results could be used to optimize MPS approaches in the development of microsatellites as genetic markers, which would reduce the cost of this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364119 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120732 | PLOS |
Clin Chem
January 2025
Division of Genomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.
Background: Massively parallel sequencing (MPS) of nucleic acids has been a transformative technology for basic and applied genomic science, increasing efficiencies and decreasing costs to enable studies of unprecedented scope and impact. In clinical settings, these technological and scientific advances have led to the development of tests that are increasingly fast, comprehensive, and more frequently employed. Practitioners of genomic medicine have applied these tools across clinical settings, including diagnosis of inherited disorders and cancers and infectious disease detection and surveillance.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFMed Mycol
December 2024
UR 3738 - CICLY - Equipe Inflammation et immunité de l'épithélium respiratoire, Faculté de Médecine Lyon-Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France.
Cryptococcus neoformans/gattii and Histoplasma capsulatum var. capsulatum may present atypical histopathological features inducing diagnostic errors. We aimed to estimate the frequency of these atypical features on formalin-fixed tissue samples (FT) and to assess the relevance of an integrated histomolecular diagnosis using specific Histoplasma capsulatum PCR and panfungal PCR followed by Sanger sequencing and/or targeted-massive parallel sequencing (MPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!