The aim of the present study was investigate the impact of seawater immersion on peripheral nerve injury and the underlying mechanisms. A total of 234 specific pathogen-free Sprague-Dawley male rats were randomly divided into a sham group, injury control group and seawater immersion + injury group. The Sciatic Functional Index (SFI) was used to assess nerve function for 6 weeks after injury. Compound muscle action potentials were measured and hematoxylin and eosin (H&E) staining of nerve specimens was carried out at week 6. Levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in nerve tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the expression levels of inducible nitric oxide synthase (iNOS) mRNA and protein were measured by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively. The SFI value in the seawater immersion + injury group after 6 weeks was lower than that in the injury control group (P<0.05). The compound muscle action potential in the seawater immersion + injury group had a prolonged latency, and the amplitude and nerve conduction velocity were decreased compared with those in the other groups (P<0.05). H&E staining demonstrated that nerve fiber regeneration was worse in the seawater immersion + injury group. The ROS and MDA levels in the seawater immersion + injury group were higher than those in the other groups (P<0.05). The expression levels of iNOS mRNA and protein gradually increased in the injury and seawater immersion + injury groups and peaked at 48 h after surgery. Immersion in seawater further aggravated sciatic nerve injury and led to worse neuronal recovery. The mechanism may be associated with oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353802 | PMC |
http://dx.doi.org/10.3892/etm.2015.2281 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Laboratoire de Génie Chimique, CNRS, INPT, UPS, Université de Toulouse, Toulouse 31432, France.
This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310007, China.
The hygrothermal aging model, based on Fick's second law of diffusion, characterizes the degradation of engineering constants in T700 carbon fiber/epoxy resin composites. It focuses on changes in the tensile modulus, shear modulus, and transverse Poisson's ratio due to moisture absorption and temperature variations. The model validates through mass change observations before and after seawater immersion, along with surface morphology assessments and tensile experiments.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan, ROC.
With increasing energy demands, the need for coating materials with exceptional superhydrophobic properties has grown substantially. However, the widespread use of fluorinated compounds, solvents, and polymer-based synthetic materials has led to heightened levels of microplastics and pollutants. Here, we used a self-curing, solvent-free, and recyclable polyester polyol polymer material combined with (5 and 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!