Ferroelectric domain wall motion induced by polarized light.

Nat Commun

Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, Madrid 28049, Spain.

Published: March 2015

Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382678PMC
http://dx.doi.org/10.1038/ncomms7594DOI Listing

Publication Analysis

Top Keywords

domain walls
16
ferroelectric domain
12
domain wall
8
polarized light
8
light ferroelectric
8
ferroelectric
7
polarization
5
domain
5
wall motion
4
motion induced
4

Similar Publications

A solution method for active suppression of reflections in anechoic chambers.

J Acoust Soc Am

January 2025

University of Twente, Faculty of Engineering Technology, Applied Mechanics and Data Analysis, Drienerlolaan 5, 7522 NG Enschede, The Netherlands.

A solution method to improve an anechoic chamber at low frequencies with the use of active noise control is presented. The approach uses the Kirchhoff-Helmholtz integral to compute the reflected sound field resulting from the primary sources together with an algorithm to compute the filter coefficients of a controller driving secondary sources on the walls of the enclosure using reference signals as inputs, which are measured on a contour enclosing the primary sources. A causal frequency domain method with conjugate gradient iterations is derived to determine the controller.

View Article and Find Full Text PDF

Aim: Tissue-invasive bacteria have been proposed to be a crucial factor in the etiopathogenesis of periodontitis, with the probable interaction of tissue-invasive bacteria with the innate immune response through inflammasomes, perpetuating periodontal attachment loss. This study aims to reveal the correlation between such tissue-invasive bacteria in upregulating inflammasomes and pro-inflammatory cytokines.

Materials And Methods: This study recruited a total of 10 patients with stage III/IV and grade C periodontitis based on the bone loss to age ratio.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Introduction to Memristive Mechanisms and Models.

Recent Pat Nanotechnol

January 2025

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands.

The increase in computational power demand led by the development of Artificial Intelligence is rapidly becoming unsustainable. New paradigms of computation, which potentially differ from digital computation, together with novel hardware architecture and devices, are anticipated to reduce the exorbitant energy demand for data-processing tasks. Memristive systems with resistive switching behavior are under intense research, given their prominent role in the fabrication of memory devices that promise the desired hardware revolution in our intensive data-driven era.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!