Translation of extracellular hormonal input into cellular responses is often mediated by repetitive increases in cytosolic free Ca(2+) concentration ([Ca(2+) ]c ). Amplitude, duration and frequency of these so-called [Ca(2+) ]c oscillations then carry information about the nature and concentration of the extracellular signalling molecule. At present, there are different hypotheses concerning the induction and control of these oscillations. Here, we investigated the role of agonist-induced receptor phosphorylation in this process using Chinese hamster ovary cells stably expressing a variant of the cholecystokinin 1 receptor (CCK1R) lacking the four consensus sites for protein kinase C (PKC) phosphorylation and deficient in CCK-induced receptor phosphorylation (CCK1R-mt cells). In the presence of cholecystokinin-(26-33)-peptide amide (CCK-8), these cells displayed Ca(2+) oscillations with a much more pronounced bursting dynamics rather than the dominant spiking dynamics observed in Chinese hamster ovary cells stably expressing the wild-type CCK1R. The bursting behaviour returned to predominantly spiking behaviour following removal of extracellular Ca(2+) , suggesting that CCK-8-induced, PKC-mediated CCK1R phosphorylation inhibits Ca(2+) influx across the plasma membrane. To gain mechanistic insight into the underlying mechanism we developed a mathematical model able to reproduce the experimental observations. From the model we conclude that binding of CCK-8 to the CCK1R leads to activation of PKC which subsequently phosphorylates the receptor to inhibit the receptor-mediated influx of Ca(2+) across the plasma membrane. Receptor-specific differences in this feedback mechanism may, at least in part, explain the observation that different agonists evoke [Ca(2+) ]c oscillations with different kinetics in the same cell type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.13267 | DOI Listing |
Eur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Nuclear Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [Ga]Ga-CyTMG and [Ga]Ga-CyFMG. In these probes, the SulfoCy5.
View Article and Find Full Text PDFDiabetes Metab J
December 2024
Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
Background: Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
View Article and Find Full Text PDFElife
December 2024
Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view.
View Article and Find Full Text PDFElife
December 2024
Research Center for Cellular Identity, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!