This study aimed at analyzing the impact of a toxic polyaromatic hydrocarbon (PAH), anthracene (ANT), on Ruditapes decussatus collected from a Tunisian coastal lagoon (Bizerte Lagoon). Filtration rates, several antioxidant enzymes--superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione transferase (GST)--as well as indices of protein oxidation status were determined in various tissues of this bivalve. Specimens were exposed to 100 μg/L of ANT for 2 days. ANT levels were evaluated using HPLC and were detected in the gill and digestive gland at different amounts. ANT exposure altered the behavior of bivalves by changing the siphon movement and decreasing filtration rate significantly. The enzymatic results indicated that ANT exposure affected the oxidative stress status of the gills of R. decussatus. In addition, modification of proteins was detected in the gills using redox proteomics after ANT treatment. Three protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly related to muscle contraction function. In contrast, no significant modification of enzymatic and protein responses was detected in the digestive gland after ANT treatment. These data demonstrate that combined behavioral and biochemical analyses are a powerful tool to provide valuable insights into possible mechanisms of toxicity of anthracene in R. decussatus. Additionally, the results highlight the potential of the gill as a valuable candidate for investigating PAH toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-4328-7 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFJCO Glob Oncol
January 2025
Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
Purpose: Metastatic urothelial carcinoma (mUC) poses a challenge to health care systems, given its treatment complexity and mortality. We aimed to describe the characteristics, treatment patterns, and survival outcomes of Mexican patients with mUC.
Methods: A retrospective study was conducted across eight centers for adults with mUC from January /2001 to December 2021.
ACS Appl Eng Mater
December 2024
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters.
View Article and Find Full Text PDFACS Appl Eng Mater
December 2024
Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States.
Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!