Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936049PMC
http://dx.doi.org/10.1042/BJ20141492DOI Listing

Publication Analysis

Top Keywords

sh2 domain
12
kinase activity
12
crystal structure
8
domain n-lobe
8
kinase
6
c-abl
5
sh2
5
domain
5
structure sh2-kinase
4
sh2-kinase construct
4

Similar Publications

Objectives: The effects of systemic inflammation on the temporomandibular joint (TMJ) are poorly understood. This study aimed to establish a mouse model to study the effects of systemic inflammation on the TMJ.

Materials And Methods: SKG mice, a BALB/c strain with spontaneous onset of rheumatoid arthritis-like symptoms due to a spontaneous point mutation (W163C) in the gene encoding the SH2 domain of ZAP-70, were treated with zymosan (β-1,3-glucan).

View Article and Find Full Text PDF

The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.

View Article and Find Full Text PDF

Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

SHEP1 alleviates cardiac ischemia reperfusion injury via targeting G3BP1 to regulate macrophage infiltration and inflammation.

Cell Death Dis

December 2024

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.

The macrophage-associated inflammation response plays an important role in myocardial ischemia-reperfusion injury (MIRI). SHEP1(SH2 domain-containing Eph receptor-binding protein 1) has been implicated in adhesion and migration of inflammatory cells. However, the role and molecular mechanism of SHEP1 regulating macrophage remains unclear during MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!