This article reported UV-B radiation effects on biochemical traits in postharvest flowers of chrysanthemum. The experiment included six levels of UV-B radiation (UV0, 0 μW cm(-2); UV50, 50 μW cm(-2); UV200, 200 μW cm(-2); UV400, 400 μW cm(-2); UV600, 600 μW cm(-2) and UV800, 800 μW cm(-2). Enhanced UV-B radiation significantly increased hydrogen peroxide content (except for UV50), but did not evidently affect malondialdehyde content in flowers. Chlorophyll b and total chlorophyll content were significantly increased by UV600 and UV800. UV400 and UV600 significantly increased anthocyanins, carotenoids and UV-B absorbing compounds content, and the activities of phenylalanine ammonia lyase (PAL) and cinnamic acid-4-hydroxylase (C4H) over the control. 4-coumarate CoA ligase (4CL) activity was significantly decreased by enhanced UV-B radiation (except for UV50). The relationships between UV-B radiation intensities and the activities of secondary metabolism enzymes were best described by a second-order polynomial. The R(2) values for UV-B radiation intensities and the activities of PAL, C4H and 4CL were 0.8361, 0.5437 and 0.8025, respectively. The results indicated that enhanced UV-B radiation could promote secondary metabolism processes in postharvest flowers, which might be beneficial for the accumulation of medically active ingredients in medicinal plants. The optimal UV-B radiation intensities in the study were between UV400-UV600.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12450DOI Listing

Publication Analysis

Top Keywords

uv-b radiation
36
μw cm-2
24
enhanced uv-b
16
postharvest flowers
12
radiation intensities
12
uv-b
10
radiation
9
biochemical traits
8
traits postharvest
8
intensities activities
8

Similar Publications

Morphological, physiological and transcriptional analyses provide insights into the biosynthesis of phenolics in Juniperus rigida under UV-B treatment.

Plant Physiol Biochem

January 2025

College of Forestry, Northwest A & F University, Yangling, 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A & F University, Yangling, 712100, China. Electronic address:

Phenolics play a crucial role in plant defense mechanisms against increased UV-B radiation. Due to their significant medicinal properties, the phenolic compounds produced by Juniperus rigida have great potential as valuable sources for medicine. However, the process of synthesizing J.

View Article and Find Full Text PDF

Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation.

Molecules

January 2025

Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.

Safflower ( L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored.

View Article and Find Full Text PDF

Proteomic insight into growth and defense strategies under low ultraviolet-B acclimation in the cyanobacterium Nostoc sphaeroides.

J Photochem Photobiol B

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China. Electronic address:

Prioritizing defense over growth often occurs under ultraviolet (UV)-B radiation while several studies showed its growth-promoting effects on photosynthetic organisms, how they overcome the growth-defense trade-off is unclear. This study deciphered the acclimation responses of the cyanobacterium Nostoc sphaeroides to low UV-B radiation (0.08 W m) using quantitative proteomic, physiological and biochemical analyses.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!