The therapeutic efficiency of recombinant thymosin β4 (rTβ4) synthesized by us was studied in vivo on spontaneous CBRB mouse model that is adequate to human chronic dermatitis. Three applications of the drug during a week significantly alleviated symptoms of the disease in female mice, and in complex with subsequent antibacterial and antifungal therapy led to a pronounced and lasting (2 months) therapeutic effect. The results attest to a possibility of using rTβ4 in combination with the known treatment protocols for chronic inflammatory diseases of the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-015-2831-y | DOI Listing |
Background: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Agricultural University, Baoding, China.
J Phys Chem Lett
January 2025
Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Reducing nonradiative recombination is crucial for minimizing voltage losses in metal-halide perovskite solar cells and achieving high power conversion efficiencies. Photoluminescence spectroscopy on complete or partial perovskite solar cell stacks is often used to quantify and disentangle bulk and interface contributions to nonradiative losses. Accurately determining the intrinsic loss in a perovskite layer is key to analyzing the origins of nonradiative recombination and developing defect engineering strategies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Jadavpur University, Kolkata 700032, India.
Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!