It is well established that the stromal niche exerts a protective effect on chronic lymphocytic leukemia (CLL) cells, thereby also affecting their drug sensitivity. One hallmark of malignant cells is metabolic reprogramming, which is mostly represented by a glycolytic shift known as the Warburg effect. Because treatment resistance can be linked to metabolic alterations, we investigated whether bone marrow stromal cells impact the bioenergetics of primary CLL cells. In fact, stromal contact led to an increase of aerobic glycolysis and the cells' overall glycolytic capacity accompanied by an increased glucose uptake, expression of glucose transporter, and glycolytic enzymes. Activation of Notch signaling and of its direct transcriptional target c-Myc contributed to this metabolic switch. Based on these observations, CLL cells' acquired increased glucose dependency as well as Notch-c-Myc signaling could be therapeutically exploited in an effort to overcome stroma-mediated drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2014-10-607036DOI Listing

Publication Analysis

Top Keywords

cll cells
12
notch-c-myc signaling
8
increased glucose
8
cells
5
stromal
4
stromal cell-mediated
4
glycolytic
4
cell-mediated glycolytic
4
glycolytic switch
4
cll
4

Similar Publications

Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link?

Cancers (Basel)

December 2024

Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.

View Article and Find Full Text PDF

Characteristics of successful expansion of tumor-infiltrating lymphocytes from colorectal cancer liver metastasis.

Sci Rep

January 2025

Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Adoptive cell therapy (ACT) utilizing tumor-infiltrating lymphocytes (TILs) has emerged as a successful treatment modality for various malignancies. However, TILs cultured from colorectal cancer (CRC) liver metastasis remain underexplored. Fifteen CRC liver metastasis tissues underwent initial expansion (IE) of TILs and rapid expansion (REP).

View Article and Find Full Text PDF

Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest.

View Article and Find Full Text PDF

CD8 T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs).

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) can rarely transform into Waldenström macroglobulinemia (WM), posing diagnostic and therapeutic challenges. The diagnosis of WM requires bone marrow infiltration by lymphoplasmacytic cells and the presence of IgM gammopathy. Immunophenotypic markers include FMC7+, CD19+, CD20+, and CD138+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!