Drosophila melanogaster is a promiscuous species that inhabits a large range of harsh environments including flooded habitats and varying temperature changes. To survive these environments, fruit flies have adapted mechanisms of tolerance that allow them to thrive. During exposure to anoxic stress, fruit flies and other poikilotherms enter into a reversible, protective coma. This coma can be manipulated based on controlled environmental conditions inside the laboratory. Here we utilize a common laboratory raised strain of D. melanogaster to characterize adaptation abilities to better understand coma recovery and survival limitations. Our goal is to mimic the fly's natural environments (wet anoxia) and relate findings to a typical gas induced environment (dry anoxia) that is commonly used in a laboratory. Despite the abundance of research regarding acute and chronic anoxic exposure and cold stress, the literature is lacking evidence linking anoxic stress with variable environmental conditions such as animal age and stress duration. We present novel ways to assess coma recovery and survival using readily available laboratory tools. Our findings suggest that younger age, exposure to colder temperatures and wet environments increase resistance to anoxic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361850PMC
http://dx.doi.org/10.1038/srep09204DOI Listing

Publication Analysis

Top Keywords

anoxic stress
12
fruit flies
8
environmental conditions
8
coma recovery
8
recovery survival
8
stress
5
pushing limit
4
limit examining
4
examining factors
4
factors affect
4

Similar Publications

Resource recovery from wastewater by directing microbial metabolism toward production of value-added biochemicals.

Bioresour Technol

January 2025

Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand. Electronic address:

Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the long-term effects of non-biodegradable polyethylene terephthalate (PET) and biodegradable polylactic acid (PLA) microplastics on sewage treatment bioreactors, focusing on nitrogen removal performance.
  • The research found that PLA significantly reduced nitrogen removal efficiencies and negatively impacted crucial microbial activities and health, unlike PET, which had less of a detrimental effect.
  • The results highlight the potential risks associated with biodegradable microplastics like PLA in wastewater treatment, suggesting that their impact should be further considered and addressed.
View Article and Find Full Text PDF

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Salinity and flooding are two major production impediments affecting rice cultivation in coastal agro-ecosystems. We investigated how rice plants use two contrasting strategies such as energy conservation (for submergence tolerance) and energy expenditure (for ion exclusion) to adapt to the combined stresses of saline water submergence (SWS). Pot and hydroponic experiments were conducted using four selected rice genotypes carrying Sub1 (Submergence1) and/or Saltol (Salinity tolerance) QTLs in their genetic background and exposed them to salinity and submergence stresses individually and combined under controlled experimental conditions.

View Article and Find Full Text PDF

Solids retention time modulates nutrient removal in pilot-scale anaerobic-aerobic-anoxic process: Carbon allocation patterns and microbial insights.

Water Res

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Anaerobic-aerobic-anoxic (AOA) process is a promising configuration to retrofit current wastewater treatment plants with intensified carbon utilization and nutrient removal, but lacks process optimization for scaling-up in real wastewater scenarios. Solids retention time (SRT) is a fundamental parameter of activated sludge process, but its roles in the AOA process remain vague. Here, we established a pilot-scale AOA process at different SRTs (10, 20, 30 d) to investigate the comprehensive responses and potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!