This study investigated the fractionation of chromium isotopes during chromium reduction by Bacillus sp. under aerobic condition, variable carbon source (glucose) concentration (0, 0.1, 1, 2.5 and 10mM), and incubation temperatures (4, 15, 25 and 37°C). The results revealed that the δ(53)Cr values in the residual Cr(VI) increased with the degree of Cr reduction, and followed a Rayleigh fractionation model. The addition of glucose only slightly affected cell-specific Cr(VI) reduction rates (cSRR). However, the value of ε (2.00±0.21‰) in the experiments with different concentrations of glucose (0.1, 1, 2.5 and 10mM) was smaller than that from the experiment without glucose (3.74±0.16‰). The results indicated that the cell-specific reduction rate is not the sole control on the degree of isotopic fractionation, and different metabolic pathways would result in differing degrees of Cr isotopic fractionation. The cSRR decreased with decreasing temperature, showing that the values of ε were 7.62±0.36‰, 4.59±0.28‰, 3.09±0.16‰ and 1.99±0.23‰ at temperatures of 4, 15, 25 and 37°C, respectively. It shown that increasing cSRR linked to decreasing fractionations has been associated with increasing temperatures. Overall, our results revealed that temperature is a primary factor affecting Cr isotopic fractionation under microbial actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.02.033DOI Listing

Publication Analysis

Top Keywords

isotopic fractionation
16
crvi reduction
8
reduction bacillus
8
bacillus aerobic
8
temperatures 37°c
8
fractionation
6
reduction
5
chromium isotopic
4
fractionation crvi
4
aerobic conditions
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Université de Montpellier, Montpellier, France.

Background: Protein metabolism and turnover can be monitored using tracer methods, notably stable isotope labeling kinetics (SILK) based on 13C-leucine incorporation. This approach has been used in Alzheimer's disease, specifically analyzing the turnover in cerebrospinal fluid of biomarkers of interest, including amyloid peptides, leading to major pathophysiological insights (Nature medicine 12:856-861). This was achieved using immunoprecipitation mass spectrometry, which enables to track a small number of targets present in low concentration.

View Article and Find Full Text PDF

Microbial impacts on early carbonate diagenesis, particularly the formation of Mg-carbonates at low temperatures, have long eluded scientists. Our breakthrough laboratory experiments with two species of halophilic aerobic bacteria and marine carbonate grains reveal that these bacteria created a distinctive protodolomite (disordered dolomite) rim around the grains. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) confirmed the protodolomite formation, while solid-state nuclear magnetic resonance (NMR) revealed bacterial interactions with carboxylated organic matter, such as extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).

View Article and Find Full Text PDF

Aerosol ammonium (NH) is a critical component of particulate matter that affects air pollution, climate, and human health. Isotope-based source apportionment of NH is essential for ammonia (NH) mitigation but the role of kinetic vs equilibrium controls on nitrogen isotope (δN) fractionation between NH and NH remains unresolved. Based on concurrent measurements of NH and NH in winter Beijing, we observed that the difference of δN between NH and NH on clean days (3.

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!