Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62 ± 0.41 kPa, compared to EMechTesting = 4.2 ± 2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440415 | PMC |
http://dx.doi.org/10.1088/0031-9155/60/7/2853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!