Legionella bacteria are ubiquitous in natural matrices and man-made systems. However, it is not always clear if these reservoirs can act as source of infection resulting in cases of Legionnaires' disease. This review provides an overview of reservoirs of Legionella reported in the literature, other than drinking water distribution systems. Levels of evidence were developed to discriminate between potential and confirmed sources of Legionella. A total of 17 systems and matrices could be classified as confirmed sources of Legionella. Many other man-made systems or natural matrices were not classified as a confirmed source, since either no patients were linked to these reservoirs or the supporting evidence was weak. However, these systems or matrices could play an important role in the transmission of infectious Legionella bacteria; they might not yet be considered in source investigations, resulting in an underestimation of their importance. To optimize source investigations it is important to have knowledge about all the (potential) sources of Legionella. Further research is needed to unravel what the contribution is of each confirmed source, and possibly also potential sources, to the LD disease burden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b00142 | DOI Listing |
J Water Health
December 2024
US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
Hot water systems are the most frequent environment associated with the prevalence and growth of opportunistic premise plumbing pathogens (OPPPs). Previous studies identified water heaters as a source of waterborne diseases and concluded that design variables may contribute to their prevalence. A multifaceted approach was used to investigate the vertical stratification of the microbiome and selected OPPPs in an electric water heater tank connected to a home plumbing system simulator.
View Article and Find Full Text PDFEvolving technology and the development of new devices that can aerosolize water present a risk for new sources of Legionella bacteria growth and spread within industrial settings. We investigated a cluster of legionellosis among employees of a manufacturing facility in South Carolina, USA, and found 2 unique equipment sources of Legionella bacteria. The cluster of cases took place during August-November 2022; a total of 34 cases of legionellosis, including 15 hospitalizations and 2 deaths, were reported.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
The proliferation and chlorine resistance of pathogenic bacteria in drinking water distribution systems (DWDSs) pose a serious threat to human health. In this study, the synergistic effects of ozonation pretreatment and trace phosphate on water quality health risk and microbial stability were investigated in the small-scale DWDSs simulated by biofilms annular reactors with cast iron coupons. The results indicated that ozonation of drinking water containing trace phosphate was equivalent to increasing microbial carbon and phosphorus sources, further leading to the rapid proliferation of opportunistic pathogens (OPs) in subsequent DWDSs.
View Article and Find Full Text PDFJ Water Health
November 2024
Department of Infectious Diseases, Kobe Institute of Health, Kobe, Japan E-mail:
Microorganisms
October 2024
Legionella Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Spain.
Two sporadic cases of legionellosis occurring in consecutive years were confirmed by positive antigenuria to serogroup 1 in individuals with limited mobility who were confined to their homes. Both cases had a history of using ultrasonic humidifiers and of low exposure to other possible sources of infection. This study was conducted through an expanded epidemiological survey and home inspection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!