The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space-time dependant Pennes bioheat transfer equation has been applied in this study. Lambert-Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2015.02.004 | DOI Listing |
Sci Rep
January 2025
Yunnan Phosphating Group Co., Ltd, Kunming, 650600, China.
Due to the fluidity of the loose medium inside the waste dump slope, the traditional monitoring system cannot fully reflect the misalignment and slip between particles inside the medium, and it is also difficult to capture the precursor information of the slip of the loose accumulation body. To reveal the dynamic evolution process of the slope instability of the waste dump slope, the coupling test system of the slope instability of the waste dump slope was used to carry out the study of the acoustic emission characteristics of the slope instability dynamic response of the dump slope under the action of vibration, and to quantitatively analyse the staged characteristics of the acoustic emission parameter evolution of the dump slope under the action of different vibration frequencies and its instability initiation node. The results show that with the increase of vibration frequency, the damage mode of the slope model gradually changes from sliding of small particles to large-scale landslides, and presents the stage process of "vibration compaction → vibration equilibrium → dynamic instability"; Under the action of low-frequency and high-amplitude, the slope model mainly shows that the tiny particles and the basement gravel slip, which is difficult to capture with the naked eye, while under the action of high-frequency and low-amplitude, the slope surface is damaged in a large area, and the overall model is unstable; The dynamic instability of the waste dump slope is accompanied by obvious acoustic emission activities, and the changes of the characteristic parameters of acoustic emission reveal, to a certain extent, the evolution of the internal state of the slope in the process of dynamic instability of the waste dump slope and its stage characteristics; The amplitude and energy efficiency of acoustic emission in the time domain show obvious fractal characteristics in the dynamic instability of the waste dump slope.
View Article and Find Full Text PDFOphthalmol Ther
December 2024
Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
Introduction: This study aims to summarize the retinal and choroidal microvascular features detected by optical coherence tomography angiography (OCTA) in the affected and fellow eyes of patients with retinal vein occlusion (RVO).
Methods: A comprehensive search of the PubMed, Embase, and Ovid databases was conducted to identify studies comparing OCTA metrics among RVO, RVO-fellow, and control eyes. Outcomes of interest included parameters related to foveal avascular zone (FAZ) and fovea- and optic nerve head (ONH)-centered perfusion measurements of superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris layer.
Talanta
December 2024
Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China. Electronic address:
Colorimetric enzyme-linked immunosorbent assays (CELISAs) have long been used for protein biomarker detection in diagnostics. Unfortunately, as confined by the monochromatic nature of detection signals and the limited catalytic activity of enzymes, CELISAs suffer from poor visual resolution and low sensitivity, hindering their effectiveness for early diagnostics in resource-limited settings. Herein, we report an ultrasensitive, high-visual-resolution CELISA (named PE-TSA-AuAg Cage-CELISA) that combines kinetically controlled growth of Ag in AuAg nanocages with poly-enzyme-boosted tyramide signal amplification (PE-TSA), enabling visual semiquantitative detection of protein biomarkers at attomolar levels with the naked eye.
View Article and Find Full Text PDFAlgorithms
December 2023
Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Int J Retina Vitreous
December 2024
Retina Service, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Tehran, Iran.
Background: This retrospective study aimed to compare optic disc vasculature changes in 1 and 3 months after treatment with either panretinal photocoagulation (PRP) or Intravitreal bevacizumab (IVB) in patients with diabetic retinopathy.
Methods: A total of 50 eyes of 29 diabetic patients without severe complications were included in this comparative case series. Of these, twenty-eight eyes (15 patients) were assigned to the PRP group, while twenty-two eyes (14 patients) were treated with the biosimilar (IVB) (Stivant CinnaGen Co.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!