Plant community composition determines the strength of top-down control in a soil food web motif.

Sci Rep

1] German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany [2] Institute of Biology, University of Leipzig, Johannisallee 21, 04103 Leipzig, Germany.

Published: March 2015

Top-down control of prey by predators are magnified in productive ecosystems due to higher sustenance of prey communities. In soil micro-arthropod food webs, plant communities regulate the availability of basal resources like soil microbial biomass. Mixed plant communities are often associated with higher microbial biomass than monocultures. Therefore, top-down control is expected to be higher in soil food webs of mixed plant communities. Moreover, higher predator densities can increase the suppression of prey, which can induce interactive effects between predator densities and plant community composition on prey populations. Here, we tested the effects of predator density (predatory mites) on prey populations (Collembola) in monoculture and mixed plant communities. We hypothesized that top-down control would increase with predator density but only in the mixed plant community. Our results revealed two contrasting patterns of top-down control: stronger top-down control of prey communities in the mixed plant community, but weaker top-down control in plant monocultures in high predator density treatments. As expected, higher microbial community biomass in the mixed plant community sustained sufficiently high prey populations to support high predator density. Our results highlight the roles of plant community composition and predator densities in regulating top-down control of prey in soil food webs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390908PMC
http://dx.doi.org/10.1038/srep09134DOI Listing

Publication Analysis

Top Keywords

top-down control
32
plant community
24
mixed plant
24
plant communities
16
predator density
16
community composition
12
soil food
12
control prey
12
food webs
12
predator densities
12

Similar Publications

Anxiety is known to significantly impair cognitive function, particularly attentional control. While exercise has been demonstrated to alleviate these cognitive deficits, the precise neural mechanisms underlying these effects remain poorly understood. This study examines the effects of exercise on attentional control in individuals with high trait anxiety, based on attentional control theory, which suggests that such individuals have reduced top-down attention.

View Article and Find Full Text PDF

MMFW-UAV dataset: multi-sensor and multi-view fixed-wing UAV dataset for air-to-air vision tasks.

Sci Data

January 2025

National Key Lab of Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology, Beijing, 100081, China.

We present an air-to-air multi-sensor and multi-view fixed-wing UAV dataset, MMFW-UAV, in this work. MMFW-UAV contains a total of 147,417 fixed-wing UAVs images captured by multiple types of sensors (zoom, wide-angle, and thermal imaging sensors), displaying the flight status of fixed-wing UAVs of different sizes, appearances, structures, and stabilized flight velocities from multiple aerial perspectives (top-down, horizontal, and bottom-up views), aiming to cover the full-range of perspectives with multi-modal image data. Quality control processes of semi-automatic annotation, manual check, and secondary refinement are performed on each image.

View Article and Find Full Text PDF

Collective behavior in biological systems emerges from local interactions among individuals, enabling groups to adapt to dynamic environments. Traditional modeling approaches, such as bottom-up and top-down models, have limitations in accurately representing these complex interactions. We propose a novel potential field mechanism that integrates local interactions and environmental influences to explain collective behavior.

View Article and Find Full Text PDF

Volitional spatial attention is lateralized in crows.

Proc Biol Sci

January 2025

Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.

Like humans and many other animal species, birds exhibit left-right asymmetries in certain behaviours due to differences in hemispheric brain functions. While the lateralization of sensory and motor functions is well established in birds, the potential lateralization of high-level executive control functions, such as volitional attention, remains unknown. Here, we demonstrate that carrion crows exhibit more pronounced volitional (endogenous) attention for stimuli monocularly viewed with the left eye and thus in the left visual hemifield.

View Article and Find Full Text PDF

Beta oscillations predict the envelope sharpness in a rhythmic beat sequence.

Sci Rep

January 2025

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.

Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!