Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385436 | PMC |
http://dx.doi.org/10.1016/j.molcel.2015.02.008 | DOI Listing |
Clin Rheumatol
January 2025
Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Previous research has demonstrated ɑ7nAch receptor (ɑ7nAchR) agonists to provide benefit for rheumatoid arthritis (RA) patients. However, the immunological mechanism of action for these ɑ7nAchR agonists has not been elucidated. Herein, the effect of GTS-21, a selective ɑ7nAchR agonist, on the differentiation of Th17 and Th2 cells was assessed.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Central laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, P.R. China.
Background: Circadian disruptions are increasingly recognized in Alzheimer's disease (AD) patients and may influence disease onset and progression. This study examines how AD pathology affects blood-borne factors that regulate circadian rhythms.
Methods: Eighty-five participants from the Sino Longitudinal Study on Cognitive Decline were enrolled: 35 amyloid-beta negative normal controls (Aβ- NCs), 23 amyloid-beta positive normal controls (Aβ+ NCs), 15 patients with amnestic mild cognitive impairment (aMCI), and 12 with Alzheimer's disease dementia (ADD).
J Exp Med
February 2025
Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France.
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features.
View Article and Find Full Text PDFFASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Biology, Indiana University, Bloomington, Indiana, USA.
The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!