Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

Chem Commun (Camb)

Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven - University of Leuven, Kasteelpark Arenberg 23, post box 2461, 3001 Heverlee, Belgium.

Published: April 2015

Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc00181aDOI Listing

Publication Analysis

Top Keywords

amino acids
12
oxidative decarboxylation
8
decarboxylation amino
8
ruthenium-catalyzed aerobic
4
aerobic oxidative
4
acids green
4
green zero-waste
4
zero-waste route
4
route biobased
4
biobased nitriles
4

Similar Publications

<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.

View Article and Find Full Text PDF

At the present stage, great progress has been achieved in understanding the mechanisms of the development of cerebral ischemia. This became possible due to the achievements of theoretical disciplines, in connection with which the general biological approach was formed in the study of pathogenesis of acute and chronic cerebrovascular disorders (CVD). The discovery of pathways of free radical oxidation in cerebral ischemia made it possible to substantiate and develop therapeutic strategies using drugs with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

Objective: To comprehensively investigate the predictive value of thyroid hormone sensitivity parameters for cervical lymph node metastasis in patients diagnosed with differentiated thyroid cancer (DTC) undergoing total thyroidectomy and neck lymph node dissection.

Methods: A retrospective cohort study was conducted involving patients diagnosed with DTC and evaluated for cervical lymph node metastasis. Relevant demographic, tumour, lymph node and thyroid hormone sensitivity parameter data were extracted from medical records and laboratory reports.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

The correlation between Fischer's ratio and the risk of cardiac dysfunction in heart failure patients.

BMC Cardiovasc Disord

December 2024

Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.

Backgrounds: Due to the high mortality and hospitalization rate in chronic heart failure (HF), it is of great significance to study myocardial nutrition conditions. Amino acids (AAs) are essential nutrient metabolites for cell development and survival. This study aims to investigate the associations and prognostic value of plasma branched-chain amino acid/aromatic amino acid ratio (Fischer's ratio, FR) in patients with left ventricular ejection fraction (LVEF) ≤ 50%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!