Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4276-2DOI Listing

Publication Analysis

Top Keywords

pbii cdii
24
cdii niii
24
niii ions
20
hydroxyapatite nanoparticles
8
impregnated apple
8
apple pomace
8
adsorption pbii
8
removal pbii
8
water hanp@ap
8
real industrial
8

Similar Publications

Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds.

J Hazard Mater

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas).

View Article and Find Full Text PDF

Rapid on-site determination of heavy metals and metalloids in contaminated biochar samples by accelerated leaching process coupled with voltammetric sensors.

Talanta

January 2025

Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:

Heavy metals and metalloids are the most common environmental pollutants. Toxicity characteristic leaching procedure (TCLP) is a standard operating procedure that is used to assess heavy metal and metalloid compositions, and evaluate the hazardous nature of waste and waste-derived materials for reuse or disposal, such as determining landfill suitability. However, TCLP and the following detections are time-consuming and require bulky laboratory-based instruments and trained personnel.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!