Oxidative stress and inflammatory responses have been identified as key elements of neuronal cell apoptosis. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in human neuroblastoma SH-SY5Y cells treated with fipronil (FPN). Based on the cytotoxic mechanism of FPN, we examined the neuroprotective effects of meloxicam against FPN-induced neuronal cell death. Treatment of SH-SY5Y cells with FPN induced apoptosis via activation of caspase-9 and -3, leading to nuclear condensation. In addition, FPN induced oxidative stress and increased expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) via inflammatory stimulation. Pretreatment of cells with meloxicam enhanced the viability of FPN-exposed cells through attenuation of oxidative stress and inflammatory response. FPN activated mitogen activated protein kinase (MAPK) and inhibitors of MAPK abolished FPN-induced COX-2 expression. Meloxicam also attenuated FPN-induced cell death by reducing MAPK-mediated pro-inflammatory factors. Furthermore, we observed both nuclear accumulation of p53 and enhanced levels of cytosolic p53 in a concentration-dependent manner after FPN treatment. Pretreatment of cells with meloxicam blocked the translocation of p53 from the cytosol to the nucleus. Together, these data suggest that meloxicam may exert anti-apoptotic effects against FPN-induced cytotoxicity by both attenuating oxidative stress and inhibiting the inflammatory cascade via inactivation of MAPK and p53 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.3136 | DOI Listing |
Int J Cardiol Cardiovasc Risk Prev
March 2025
Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).
View Article and Find Full Text PDFBioact Mater
April 2025
School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Anesthesiology, The 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou, China.
Objective: Limb ischemia-reperfusion injury caused by repeated tourniquet application usually leads to acute kidney injury, adversely affecting patient prognosis. This study aimed to investigate the renoprotective effect of remote ischemic preconditioning (RIPC) in patients undergoing extremity surgery with repeated tourniquet application.
Methods: 64 patients were enrolled and randomly divided into an RIPC group and a control group, with 32 patients in each.
3 Biotech
January 2025
School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico.
Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!