A metabolomic assessment of NAC154 transcription factor overexpression in field grown poplar stem wood.

Phytochemistry

Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:

Published: July 2015

Several xylem-associated regulatory genes have been identified that control processes associated with wood formation in poplar. Prominent among these are the NAC domain transcription factors (NACs). Here, the putative involvement of Populus NAC154, a co-ortholog of the Arabidopsis gene SND2, was evaluated as a regulator of "secondary" biosynthetic processes in stem internode tissues by interrogating aqueous methanolic extracts from control and transgenic trees. Comprehensive untargeted metabolite profiling was accomplished with a liquid chromatography-mass spectrometry platform that utilized two different chromatographic supports (HILIC and reversed phase) and both positive and negative ionization modes. Evaluation of current and previous year tissues provided datasets for assessing the effects of NAC154 overexpression in wood maturation processes. Phenolic glycoside levels as well as those of oligolignols, sucrose and arginine were modulated with phenotypic and chemotypic traits exhibiting similar trends. Specifically, increased levels of arginine in the NAC154 overexpressing tissues supports a role for the transcription factor in senescence/dormancy-associated processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2015.02.013DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
metabolomic assessment
4
nac154
4
assessment nac154
4
nac154 transcription
4
factor overexpression
4
overexpression field
4
field grown
4
grown poplar
4
poplar stem
4

Similar Publications

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Polyomavirus enhancer activator 3 (PEA3), an ETS transcription factor, has been documented to regulate the development and metastasis of human cancers. Nonetheless, a thorough analysis examining the relationship between the PEA3 subfamily members and tumour development, prognosis, and the tumour microenvironment (TME) across various cancer types has not yet been conducted. The expression profiles and prognostic significance of the PEA3 subfamily were evaluated using data from the GEO, TCGA, and PrognoScan databases, in conjunction with COX regression analyses and the Kaplan-Meier Plotter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!