The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2015.02.005DOI Listing

Publication Analysis

Top Keywords

double layer
12
hesc-rpe cells
12
collagen films
12
stem cell
8
cell derived
8
derived retinal
8
retinal pigment
8
pigment epithelial
8
bruch's membrane
8
prepared collagen
8

Similar Publications

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Polyaniline-ZnTi-LDH heterostructure with d-π coupling for enhanced photocatalysis of pollutant removal.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China. Electronic address:

Heterointerface engineering is an effective strategy to design and construct high-performance photocatalysts. Herein, polyaniline (PANI) nanoparticles and ZnTi layered double hydroxide (ZnTi-LDH) nanosheets were integrated to form organic-inorganic heterostructure (PANI/LDH) via d-π electronic coupling using in-situ polymerization for photocatalytic oxidation/reduction towards tetracycline (TC) and Cr(VI). The photocatalytic activity was closely related to feed amount of aniline (Ani) in the polymerization process, which the abundant PANI nanoparticles were evenly distributed on the surface of ZnTi-LDH nanosheets at the proper Ani feed amount, and thus reinforced d-π electronic coupling at the organic-inorganic interfaces more efficiently.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

Effects of acute PM purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics.

J Hazard Mater

January 2025

Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China. Electronic address:

The relationship between fine particulate matter (PM) and cognition has been extensively investigated. However, the causal impact of acute PM purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis.

View Article and Find Full Text PDF

NiFe-based arrays with manganese dioxide enhance chloride blocking for durable alkaline seawater oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:

Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!