Low-temperature scanning tunneling microscopy is used to observe self-assembled structures of ferrocenedicarboxylic acid (Fc(COOH)2) on the Au(111) surface. The surface is prepared by pulse-deposition of Fc(COOH)2 dissolved in methanol, and the solvent is evaporated before imaging. While the rows of hydrogen-bonded dimers that are common for carboxylic acid species are observed, the majority of adsorbed Fc(COOH)2 is instead found in six-molecule clusters with a well-defined and chiral geometry. The coverage and distribution of these clusters are consistent with a random sequential adsorption model, showing that solution-phase species are determinative of adsorbate distribution for this system under these reaction conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4909517 | DOI Listing |
Chem Asian J
January 2025
China Three Gorges University, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, CHINA.
Nat Commun
January 2025
Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, New York University, New York, New York 10003, USA.
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
A coarse-grained model combining the acceptor-hydrogen-donor 3-body potential is first developed in this work to explore the fracture property and microscopic mechanisms of associative hydrogen-bonded polymers (AHBPs). Next, a triaxial deformation mode is performed to reveal that the fracture toughness of AHBPs initially improves and then is reduced as the number of active groups increases. By characterizing the stress decomposition, the strong hydrogen bond (HB) network improves the maximum stress but reduces the elongation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!