Serpentine chain C60 phases were observed in scanning tunneling microscopy (STM) images of C60 layers on zinc phthalocyanine (ZnPc) or pentacene covered Ag(111) and Au(111) surfaces. This low-density, quasi-one-dimensional organization contrasts starkly with the close-packed hexagonal phases observed for C60 layers on bare metal substrates. STM was employed to perform a detailed investigation of these chain structures for C60/ZnPc/Ag(111) heterolayers. Motivated by the similarity of these chain phases, and the chain and stripe organization occurring in dipole-fluid systems, we investigated a model based on competing van der Waals attractions and electrostatic repulsions between C60 molecules as an explanation for the driving force behind these monolayer phases. Density functional theory (DFT) calculations revealed significant charge transfer to C60 from the Ag(111) substrate, through the intervening ZnPc layer, inducing electrostatic interactions between C60 molecules. Molecular dynamics simulations performed with attractive van der Waals interactions plus repulsive dipole-dipole interactions reproduced the C60 chain phases with dipole magnitudes consistent with DFT calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4906044 | DOI Listing |
Science
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.
View Article and Find Full Text PDFReprod Fertil Dev
January 2025
Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.
Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.
Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.
Alzheimers Dement
December 2024
Alzheimer's Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA, USA.
Background: The emergence of blood-based biomarkers offers a cost-effective and less invasive alternative to established neuroimaging and cerebrospinal fluid biomarkers. Newly developed fluid biomarkers, including N-terminal tau fragment (NT1), have shown promise for identifying individuals at risk for Alzheimer's disease (AD). Evidence has shown NT1 may be more abundant than full-length tau across the AD continuum and has high sensitivity and specificity to separate cognitively normal (CN) individuals from those with mild cognitive impaired (MCI) and AD in discovery and replication cohorts.
View Article and Find Full Text PDFBackground: Down syndrome (DS, trisomy 21) is the most frequent genetic cause of intellectual disability (ID), prevalent in approximately 1 in 900 live births (Loane et al., 2013). People with DS are at high risk to develop Alzheimer's disease dementia (AD) (Lott & Head, 2001).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!