Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436985 | PMC |
http://dx.doi.org/10.1152/ajpheart.00834.2014 | DOI Listing |
Langmuir
January 2025
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia.
The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension.
View Article and Find Full Text PDFBiomedicines
January 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India.
: Cancer is caused by disruptions in the homeostatic state of normal cells, which results in dysregulation of the cell cycle, and uncontrolled growth and proliferation in affected cells to form tumors. Successful development of tumorous cells proceeds through the activation of pathways promoting cell development and functionality, as well as the suppression of immune signaling pathways; thereby providing these cells with proliferative advantages, which subsequently metastasize into surrounding tissues. These effects are primarily caused by the upregulation of oncogenes, of which SPP1 (secreted phosphoprotein 1), a non-collagenous bone matrix protein, is one of the most well-known.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department XV, Clinic of Radiology and Medical Imaging, "VictorBabes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania.
: Artificial intelligence (AI) is gaining an increasing amount of influence in various fields, including medicine. In radiology, where diagnoses are based on collaboration between diagnostic devices and the professional experience of radiologists, AI intervention seems much easier than in other fields, but this is often not the case. Many times, the patients orient themselves according to the doctor, which is not applicable in the case of AI.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Foot and Ankle Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
Objective: To evaluate the early efficacy of local application of tranexamic acid on the osteotomy surface during hallux valgus surgery in reducing postoperative occult blood loss and thus postoperative swelling.
Methods: The data of 40 cases with hallux valgus osteotomy admitted to the Department of Foot and Ankle Surgery of Jishuitan Hospital from July 11, 2022 to October 8, 2022, including 5 males and 35 females were retrospectively analyzed. According to the inclusion and exclusion criteria, 32 cases were finally divided into 16 cases in the observation group (application of tranexamic acid) and 16 cases in the control group (no application of tranexamic acid).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!