High-throughput drug repositioning for the discovery of new treatments for Chagas disease.

Mini Rev Med Chem

Medicinal Chemistry, Department of Biological Science, Exact Science College, National University of La Plata (UNLP), Argentina, 47 & 115 (B1900AJI) La Plata, Buenos Aires, Argentina.

Published: December 2015

Despite affecting around 8 million people worldwide and representing an economic burden above $7 billion/ year, currently approved medications to treat Chagas disease are still limited to two drugs, nifurtimox and benznidazole, which were developed more than 40 years ago and present important efficacy and safety limitations. Drug repositioning (i.e. finding second or further therapeutic indications for known drugs) has raised considerable interest within the international drug development community. There are many explanations to the current interest on drug repositioning including the possibility to partially circumvent clinical trials and the consequent saving in time and resources. It has been suggested as a particular attractive approach for the development of novel therapeutics for neglected diseases, which are usually driven by public or non-profit organizations. Here we review current computer-guided approaches to drug repositioning and reports on drug repositioning stories oriented to Chagas disease, with a focus on computer-guided drug repositioning campaigns.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138955751503150312120208DOI Listing

Publication Analysis

Top Keywords

drug repositioning
24
chagas disease
12
repositioning
6
drug
6
high-throughput drug
4
repositioning discovery
4
discovery treatments
4
treatments chagas
4
disease despite
4
despite people
4

Similar Publications

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

Background: Dilated Cardiomyopathy (DCM) is a debilitating cardiovascular disorder that challenges current therapeutic strategies. The exploration of novel drug repositioning opportunities through gene expression analysis offers a promising avenue for discovering effective treatments.

Objective: This study aims to identify potential drug repositioning opportunities and lead compounds for DCM treatment by optimizing gene expression characteristics using published data.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer.

View Article and Find Full Text PDF

Anticancer effect of the antirheumatic drug leflunomide on oral squamous cell carcinoma by the inhibition of tumor angiogenesis.

Discov Oncol

January 2025

Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Objectives: Leflunomide (LEF) is a conventional synthetic disease-modifying antirheumatic drug and suppresses T-cell proliferation and activity by inhibiting pyrimidine synthesis using dihydroorotase dehydrogenase (DHODH); however, several studies have demonstrated that LEF possesses anticancer and antiangiogenic effects in some malignant tumors. Therefore, we investigated the anticancer and antiangiogenic effects of LEF on oral squamous cell carcinoma (OSCC).

Methods: To evaluate the inhibitory effect of LEF on OSCC, cell proliferation and wound-healing assays using human OSCC cell lines were performed.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!