Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407210PMC
http://dx.doi.org/10.1128/AEM.04123-14DOI Listing

Publication Analysis

Top Keywords

r3bv2 strains
12
ralstonia solanacearum
8
race biovar
8
strains
8
lowland tropical
8
solanacearum strains
8
strains disease
8
disease tropical
8
tropical lowlands
8
competitive fitness
8

Similar Publications

Most species complex strains cause bacterial wilts in tropical or subtropical zones, but the group known as race 3 biovar 2 (R3bv2) is cool virulent and causes potato brown rot at lower temperatures. R3bv2 has invaded potato-growing regions around the world but is not established in the United States. Phylogenetically, R3bv2 corresponds to a subset of the phylotype IIB clade, but little is known about the distribution of the cool virulence phenotype within phylotype IIB.

View Article and Find Full Text PDF

Plant-pathogenic bacteria in the Ralstonia solanacearum species complex (RSSC) cause highly destructive bacterial wilt disease of diverse crops. Wilt disease prevention and management is difficult because RSSC persists in soil, water, and plant material. Growers need practical methods to kill these pathogens in irrigation water, a common source of disease outbreaks.

View Article and Find Full Text PDF

Detecting and correctly identifying Ralstonia solanacearum in infected plants is important because the race 3 biovar 2 (R3bv2) subgroup is a high-concern quarantine pathogen, while the related sequevar 7 group is endemic to the southeastern United States. Preventing accidental import of R3bv2 in geranium cuttings demands sensitive detection methods that are suitable for large-volume use both onshore and offshore. However, detection is complicated by frequent asymptomatic latent infections, uneven pathogen distribution within infected plants, pathogen viable-but-not-culturable state, and biosecurity laws that restrict transport of R3bv2 strains for diagnosis.

View Article and Find Full Text PDF

While most strains of the plant pathogenic bacterium Ralstonia solanacearum are tropical, the race 3 biovar 2 (R3bv2) subgroup attacks plants in cooler climates. To identify mechanisms underlying this trait, we compared the transcriptional profiles of R. solanacearum R3bv2 strain UW551 and tropical strain GMI1000 at 20°C and 28°C, both in culture and during tomato pathogenesis.

View Article and Find Full Text PDF

Draft Genome Sequences of Ralstonia solanacearum Race 3 Biovar 2 Strains with Different Temperature Adaptations.

Genome Announc

August 2015

Canadian Food Inspection Agency, Charlottetown Laboratory (CFIA-CL), Charlottetown, Canada

Ralstonia solanacearum race 3 biovar 2 (R3bv2) causes brown rot of potato in countries with temperate climates. Here, we report two draft genome sequences of R. solanacearum R3bv2 NCPPB909 and CFIA906 with different temperature adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!