In fishes, the evolution of herbivory has occured within a spectrum of digestive strategies, with two extremes on opposite ends: (i) a rate-maximization strategy characterized by high intake, rapid throughput of food through the gut, and little reliance on microbial digestion or (ii) a yield-maximization strategy characterized by measured intake, slower transit of food through the gut, and more of a reliance on microbial digestion in the hindgut. One of these strategies tends to be favored within a given clade of fishes. Here, we tested the hypothesis that rate or yield digestive strategies can arise in convergently evolved herbivores within a given lineage. In the family Stichaeidae, convergent evolution of herbivory occured in Cebidichthys violaceus and Xiphister mucosus, and despite nearly identical diets, these two species have different digestive physiologies. We found that C. violaceus has more digesta in its distal intestine than other gut regions, has comparatively high concentrations (>11 mM) of short-chain fatty acids (SCFA, the endpoints of microbial fermentation) in its distal intestine, and a spike in β-glucosidase activity in this gut region, findings that, when coupled to long retention times (>20 h) of food in the guts of C. violaceus, suggest a yield-maximizing strategy in this species. X. mucosus showed none of these features and was more similar to its sister taxon, the omnivorous Xiphister atropurpureus, in terms of digestive enzyme activities, gut content partitioning, and concentrations of SCFA in their distal intestines. We also contrasted these herbivores and omnivores with other sympatric stichaeid fishes, Phytichthys chirus (omnivore) and Anoplarchus purpurescens (carnivore), each of which had digestive physiologies consistent with the consumption of animal material. This study shows that rate- and yield-maximizing strategies can evolve in closely related fishes and suggests that resource partitioning can play out on the level of digestive physiology in sympatric, closely related herbivores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2014.12.002 | DOI Listing |
Ecology
January 2025
Tennenbaum Marine Observatories Network, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large-scale meadow collapse in the past, and the causative pathogen, Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany.
Herbivores are generally considered to reduce plant fitness. However, as in natural communities they often feed on several competing plant species, herbivores can also increase plant fitness by reducing interspecific competition among plants. In this study, we developed a testable model to predict plant fitness in the presence of an interspecific competitor and a herbivore that feeds on both plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.
Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
A central goal of ecosystem restoration is to promote diverse, native-dominated plant communities. However, restoration outcomes can be highly variable. One cause of this variation may be the decisions made during the seed mix design process, such as choosing the number of species to include (sown diversity) or the number of locations each species should be sourced from (source diversity, manipulated to affect genetic diversity).
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany. Electronic address:
Beetles that feed on the nutritionally depauperate and recalcitrant tissues provided by the leaves, stems, and roots of living plants comprise one-quarter of herbivorous insect species. Among the key adaptations for herbivory are plant cell wall-degrading enzymes (PCWDEs) that break down the fastidious polymers in the cell wall and grant access to the nutritious cell content. While largely absent from the non-herbivorous ancestors of beetles, such PCWDEs were occasionally acquired via horizontal gene transfer (HGT) or by the uptake of digestive symbionts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!