AI Article Synopsis

  • The study aimed to clarify the immune response mechanisms in sheep infected with bluetongue virus (BTV) serotypes 1 and 8, focusing on cytokine roles and cell-mediated immunity.
  • During the initial infection stage, depletion of specific T cell subsets and cytokines indicated a compromised immune response, allowing viral replication, but a recovery of T cells and an increase in cytokines were observed in later stages, leading to reduced viremia.
  • The findings suggest that both cellular and humoral immune responses are important for protective immunity against BTV in sheep, with IL-10 and CD25(+) cells potentially playing roles in regulating inflammation and immunity.

Article Abstract

Protective immunity in sheep with bluetongue virus (BTV) infection as well as the role of BTV-induced cytokines during immune response remains unclear. Understanding the basis immunological mechanisms in sheep experimentally infected with serotypes 1 and 8 (BTV-1 and -8) was the aim of this study. A time-course study was carried out in order to evaluate cell-mediated immune response and serum concentrations of cytokines (IL-1β, TNFα, IL-12, IFNγ, IL-4 and IL-10) with inflammatory and immunological functions. Depletion of T cell subsets (mainly CD4(+), γδ and CD25(+)) together with the absence of cytokines (IFNγ and IL-12) involved in the regulation of cell-mediated antiviral immunity at the first stage of the disease suggested that both BTV-1 and BTV-8 might impair host's capability against primary infections which would favor viral replication and spreading. However, cellular immune response and cytokines elicited an immune response in sheep that efficiently reduced viremia in the final stage of the experiment. Recovery of T cell subsets (CD4(+) and CD25(+)) together with a significant increase of CD8(+) T lymphocytes in both infected groups were observed in parallel with the decrease of viremia. Additionally, the recovery of CD4(+) T lymphocytes together with the significant increase of IL-4 serum levels at the final stage of the experiment might contribute to humoral immune response activation and neutralizing antibodies production against BTV previously described in the course of this experiment. These results suggested that both cellular and humoral immune response may contribute to protective immunity against BTV-1 and BTV-8 in sheep. The possible role played by IL-10 and CD25(+) cells in controlling inflammatory and immune response in the final stage of the experiment has also been suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2015.02.022DOI Listing

Publication Analysis

Top Keywords

immune response
28
final stage
12
stage experiment
12
immune
8
cellular immune
8
sheep experimentally
8
experimentally infected
8
bluetongue virus
8
protective immunity
8
cell subsets
8

Similar Publications

Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.

View Article and Find Full Text PDF

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!