To develop more effective anticancer mucoadhesive drug delivery system for the treatment of colorectal cancer, chitosan based nanogels (NGs) were prepared by electrostatic interaction between chitosan (CS) and carboxymethyl-chitosan (CMCS). By respectively using tripolyphosphate (TPP) and CaCl2 as ionic crosslinker, two well-characterized doxorubicin hydrochloride (DOX) loaded NGs with opposite zeta potential (DOX:CS/CMCS/TPP NGs, -32.6±1.1 mV and DOX:CS/CMCS/Ca2+ NGs, +31.8±0.9 mV) were obtained. Compared with DOX:CS/CMCS/TPP NGs, DOX:CS/CMCS/Ca2+ NGs were taken up to a greater extent by colorectal cancer cells, resulting in greater reduction in percentage of cell viability. Owing to high binding capability to mucin and inhibited paracellular transport by colon, DOX:CS/CMCS/Ca2+ NGs exhibited improved mucoadhesion and limited permeability. This is beneficial to prolong the contact time of formulation onto intestinal mucosa and improved local drug concentration. The results provided evidence DOX:CS/CMCS/Ca2+ NGs to be exciting and promising for the treatment of colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.02.042DOI Listing

Publication Analysis

Top Keywords

doxcs/cmcs/ca2+ ngs
16
colorectal cancer
12
chitosan based
8
based nanogels
8
drug delivery
8
treatment colorectal
8
ngs
8
doxcs/cmcs/tpp ngs
8
surface charge
4
charge mucoadhesion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!