Surface reconstruction from measurements of spatial gradient is an important computer vision problem with applications in photometric stereo and shape-from-shading. In the case of morphologically complex surfaces observed in the presence of shadowing and transparency artifacts, a relatively large dense gradient measurements may be required for accurate surface reconstruction. Consequently, due to hardware limitations of image acquisition devices, situations are possible in which the available sampling density might not be sufficiently high to allow for recovery of essential surface details. In this paper, the above problem is resolved by means of derivative compressed sensing (DCS). DCS can be viewed as a modification of the classical CS, which is particularly suited for reconstructions involving image/surface gradients. In DCS, a standard CS setting is augmented through incorporation of additional constraints arising from some intrinsic properties of potential vector fields. We demonstrate that using DCS results in reduction in the number of measurements as compared with the standard (dense) sampling, while producing estimates of higher accuracy and smaller variability as compared with CS-based estimates. The results of this study are further supported by a series of numerical experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2409565DOI Listing

Publication Analysis

Top Keywords

surface reconstruction
12
compressed sensing
8
surface
4
reconstruction gradient-field
4
gradient-field domain
4
domain compressed
4
sensing surface
4
reconstruction measurements
4
measurements spatial
4
spatial gradient
4

Similar Publications

PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

Background: Mild Behavioral Impairment (MBI) is the onset of sustained neuropsychiatric symptoms that are considered as a possible precursor to neurodegenerative conditions, especially dementia. The concept of MBI recognizes that behavioral changes may be an early sign of brain changes due to neurodegeneration. Very recent research has shown behavioral changes in MBI might be linked to changes in brain structure, including cortical thickness.

View Article and Find Full Text PDF

Background: Loss of muscle mass and strength in patients who have experienced severe burns is dramatic and associated with subsequent functional impairment. Past work has shown that exercise and oxandrolone, an anabolic steroid, individually improve muscle function and muscle mass in severely burned patients. This study aims to evaluate the effect of oxandrolone treatment combined with resistance exercise on muscle atrophy and investigate the protein synthesis and mitochondrial biogenesis pathways in a hindlimb suspension model.

View Article and Find Full Text PDF

Background: Midfacial aging involves skeletal changes, muscle weakening, and fat redistribution, resulting in volume loss, skin sagging, and deepened nasolabial folds. High-Intensity Facial Electrical Stimulation (HIFES) combined with Radiofrequency (RF) is a novel non-invasive method to address these changes by enhancing muscle mass and remodeling subcutaneous tissue.

Objectives: To assess the efficacy of HIFES and Synchronized RF in improving midfacial aesthetics, specifically muscle thickness, skin displacement, and facial volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!