Depth superresolution by transduction.

IEEE Trans Image Process

Published: May 2015

This paper presents a depth superresolution (SR) method that uses both of a low-resolution (LR) depth image and a high-resolution (HR) intensity image. We formulate depth SR as a graph-based transduction problem. In particular, the HR intensity image is represented as an undirected graph, in which pixels are characterized as vertices, and their relations are encoded as an affinity function. When the vertices initially labeled with certain depth hypotheses (from the LR depth image) are regarded as input queries, all the vertices are scored with respect to the relevances to these queries by a classifying function. Each vertex is then labeled with the depth hypothesis that receives the highest relevance score. We design the classifying function by considering the local and global structures of the HR intensity image. This approach enables us to address a depth bleeding problem that typically appears in current depth SR methods. Furthermore, input queries are assigned in a probabilistic manner, making depth SR robust to noisy depth measurements. We also analyze existing depth SR methods in the context of transduction, and discuss their theoretic relations. Intensive experiments demonstrate the superiority of the proposed method over state-of-the-art methods both qualitatively and quantitatively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2405342DOI Listing

Publication Analysis

Top Keywords

depth
12
intensity image
12
depth superresolution
8
depth image
8
labeled depth
8
input queries
8
classifying function
8
depth methods
8
image
5
superresolution transduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!