Egg-in-cube: design and fabrication of a novel artificial eggshell with functionalized surface.

PLoS One

Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan.

Published: January 2016

An eggshell is a porous microstructure that regulates the passage of gases to allow respiration. The chick embryo and its circulatory system enclosed by the eggshell has become an important model for biomedical research such as the control of angiogenesis, cancer therapy, and drug delivery test, because the use of embryo is ethically acceptable and it is inexpensive and small. However, chick embryo and extra-embryonic blood vessels cannot be accessed freely and has poor observability because the eggshell is tough and cannot be seen through, which limits its application. In this study, a novel artificial eggshell with functionalized surface is proposed, which allows the total amount of oxygen to pass into the egg for the chick embryo culturing and has high observability and accessibility for embryo manipulation. First, a 40-mm enclosed cubic-shaped eggshell consisting of a membrane structure and a rigid frame structure is designed, and then the threshold of the membrane thickness suitable for the embryo survival is figured out according to the oxygen-permeability of the membrane structure. The designed artificial eggshell was actually fabricated by using polydimethylsiloxane (PDMS) and polycarbonate (PC) in the current study. Using the fabricated eggshell, chick embryo and extra-embryonic blood vessels can be observed from multiple directions. To test the effectiveness of the design, the cubic eggshells were used to culture chick embryos and survivability was confirmed when PDMS membranes with adequate oxygen permeability were used. Since the surface of the eggshell is transparent, chick embryo tissue development could be observed during the culture period. Additionally, the chick embryo tissues could be accessed and manipulated from outside the cubic eggshell, by using mechanical tools without breakage of the eggshell. The proposed "Egg-in-Cube" with functionalized surface has great potential to serve as a promising platform for biomedical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359160PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118624PLOS

Publication Analysis

Top Keywords

chick embryo
24
artificial eggshell
12
functionalized surface
12
eggshell
11
embryo
9
novel artificial
8
eggshell functionalized
8
surface eggshell
8
embryo extra-embryonic
8
extra-embryonic blood
8

Similar Publications

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung.

Dev Biol

January 2025

Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:

During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Sonic Hedgehog Determines Early Retinal Development and Adjusts Eyeball Architecture.

Int J Mol Sci

January 2025

Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan.

The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!