Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.081303 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:
Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.
View Article and Find Full Text PDFExp Cell Res
January 2025
Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.
View Article and Find Full Text PDFLancet Microbe
January 2025
International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; International Vaccine Institute, Seoul, South Korea; UCLA Fielding School of Public Health, Los Angeles, CA, USA; Vaccine Innovation Center, Korea University School of Medicine, Seoul, South Korea. Electronic address:
Background: Patients with cholera have been shown to be protected against subsequent cholera for 3 years after their initial episode. We aimed to assess protection at 10 years of follow-up.
Methods: In this retrospective cohort study, cohorts of patients treated for cholera (index patients) and contemporaneously selected age-matched individuals without cholera (controls), randomly selected from the population of Matlab, Bangladesh, were assembled between 1990 and 2009 and followed for up to 10 years.
This study concerns the U/U ratios in environmental samples collected in the Pamir region (Central Asia). Cryoconite (a supra-glacial sediment), soil and river water were sampled in the Muztagh Ata Glacier Basin, a secondary basin belonging to Gaizi River watershed. The aim of the research is to assess the impact of anthropic nuclear activities in such a remote area, being the U/U ratio highly sensitive to anthropogenic disturbances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!