We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600 MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.080501 | DOI Listing |
Philos Trans A Math Phys Eng Sci
December 2024
Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China.
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under the strictest overfilled launch condition with a maximum length of 2.
View Article and Find Full Text PDFNanophotonics
June 2024
Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA.
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling.
View Article and Find Full Text PDFNanophotonics
November 2023
Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea.
Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals.
View Article and Find Full Text PDFNanophotonics
January 2024
The School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
Polarized light has promising applications in biological inspections, displays, and precise measurements. Direct emission of polarized light from a semiconductor device is highly desired in order to reduce the size and energy-consumption of the whole system. In this study, we demonstrate a semipolar GaN-based microcavity light-emitting diode (MCLED) that could simultaneously produce green light with perpendicular and parallel polarizations to the -axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!