Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We discuss the problem of the detection of hyperchaotic oscillations in coupled nonlinear systems when the available information about this complex dynamical regime is very limited. We demonstrate the ability of diagnosing the chaos-hyperchaos transition from return times into a Poincaré section and show that an appropriate selection of the secant plane allows a correct estimation of two positive Lyapunov exponents (LEs) from even a single sequence of return times. We propose a generalized approach for extracting dynamics from point processes that allows avoiding spurious identification of the dynamical regime caused by artifacts. The estimated LEs are nearly close to their expected values if the second positive LE is essentially different from the largest one. If both exponents become nearly close, an underestimation of the second LE may be obtained. Nevertheless, distinctions between chaotic and hyperchaotic regimes are clearly possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.91.022921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!